Maker Metrics: Measuring the Impact of Academic Makerspaces

By Jenn Karson

We know that academic makerspaces create meaningful experiences for students, yet how do we measure this meaningful impact? Where do we start?
Last fall on behalf of the UVM FabLab I attended the first International Symposium on Academic Makerspaces (ISAM) at MIT. Organizers for the symposium came from MIT, Yale, Stanford, Olin, Carnegie Mellon, Case Western Reserve, Georgia Tech and UC Berkeley.

I specifically attended the conference to learn how to better use metrics to measure the impact of academic makerspaces. The big idea emphasized by Malcom Cooke of ThinkBox at Case Western was  Keep Calm and Collect Data – collect as much data as possible and start today! Collect data that you can assess and measure over time, look to metrics and outcomes, quantitative and qualitative outcomes.

Read More

Bamboo Fashion in the FabLab: 3D Printed Molds Mimic Bamboo

dorr_moldBamboo is an appealing material for many purposes and worldwide because it is reliable, inexpensive and grows rapidly in varied conditions. As a 2015 Barrett Scholar undergraduate Civil Engineering major Sara Dorr created unique molds using the FabLab’s 3d printers that mimic the internal patterns bamboo fiber. These molds provided opportunities to experiment with novel distributions of materials like carbon fiber. The potential outcome is newly engineered composites that can be used to optimize lightweight energy harvesting structures such as wind turbines.
dorr_bamboo

In bamboo there is a higher density of structural fibers near the stronger exterior surface; this density gradually decreases in fiber concentration moving inward and away from the exterior. This graded pattern is considered to be the critical contributor to bamboo’s remarkable strength in resisting lateral wind loads.

 

 door_diagram

 

As a Barrett Scholar Sara’s research was advised by Professor Ting Tan. Learn more about Professor Tan’s research.

Diagrams by Sara Dorr. Photo of Sara by Cam C Ruffle-Deignan.

Sara Dorr and the Stratysys Dimension 3d printer. Photo by CRD
Sara Dorr and the Stratysys Dimension 3d printer.

Post submitted by Cam C Ruffle-Deignan.

Making “Greenspeed” in the UVM FabLab

AERO

The Alternative Energy Racing Organization (AERO) uses the FabLab almost daily during the school year to prototype different parts on their alternative energy racing car, Greenspeed. The machine they use most is the laser cutter. The laser cutter allows them to create quick cardboard prototypes to ensure proper geometry and measurements for car parts that will later be machined.

“The rapid prototyping tools of the FabLab make it easy for AERO to iterate and prototype quickly,” says team member Emmie Bolt. Access to the FabLab provides opportunities for the group to be creative and customize designs.

image00Photographed here is the AERO car steering wheel, printed on the FabLab’s Stratysys Dimension 3d printer in 2013. Through multiple years of racing competitions it has held up extremely well and will hopefully steer the car to victory at this spring’s annual International Formula Hybrid Competition.

Learn more about UVM AERO

Learn more about the Formula Hybrid Competition

 

Photos provided by Emmie Bolt and AERO.
Post submitted by Emmie Bolt

3D Printing the Rank-3 Shi Arrangement

 

Greg Warrington
Professor Greg Warrington
Associate Chair, Dept. of Mathematics & Statistics
Photo credit: Sally McCay

A challenge in many parts of mathematics is that of visualizing structures that live in four dimensions and higher. Such visualizations are crucial for intuition as often important mathematical intricacies do not arise in lower dimensions. In this project, the CEMS UVM FabLab helped Professor Warrington make a 3D print of a four-dimensional hyperplane arrangement called the rank-3 Shi arrangement.

The project was funded by the Office of the Vice President for Research (OVPR) Faculty Activity Network (FAN)